Rend. Circ. Mat. Palermo
DOI 10.1007/s12215-015-0192-z

Finite groups having centralizer commutator product
property

Giilin Ercan

Received: 28 November 2014 / Accepted: 3 February 2015
© Springer-Verlag Italia 2015

Abstract Let « be an automorphism of a finite group G and assume that G = { [g.a]: g€
G } - Cg(ar). We prove that the order of the subgroup [G, «] is bounded above by n'°g+D
where 7 is the index of Cg (@) in G.
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1 Introduction

Let A be a finite group that acts on the finite group G. In the case where (|G|, |A|) = 1,
there are several very useful relations between the groups G and A, some of which are as
follows: (i) G =[G, A]- Cg(A), (i) [G, A, A] =[G, A] and (iii) Cg/n (A) = CG(A)N/N
for any A-invariant normal subgroup N of G. Almost all of the research papers studying this
kind of action concerned with the situations where the fixed point subgroup C(A) has a
restricted structure. However, Parker and Quick [1] considered a dual situation by assuming
that the index of C (A) is bounded. As this assumption clearly gives no restriction to Cg (A),
they focused their attention on the group [G, A] and proved that |[G, A]| < n'°20+D if
|G : Ca(A)] < n.

We consider here a special noncoprime action in view of [1]:

Let o be an automorphism of the finite group G such that for every x € G, x = [g,a] - z
for some g € G and z € Cg ().

In the literature a finite group G admitting such an automorphism « is called an a-CCP
group where the acronym CCP stands for “centralizer commutator product”. Lemma 2.1
below shows that nice relations indicated above which are valid in the case of a coprime
action also survive in the setting of «-CCP groups. The study of «-CCP groups was started
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by Stein [2] who proved that the subgroup [G, «] is solvable. The goal of the present paper is
to give an upper bound for the order of [G, ] in terms of the index of C (o) in G. Namely,
we prove the following:

Theorem A Let G be an o-CCP group such that |G : Cg(a)| < n. Then |[G, «]| <
nlog2(n+1).

An internal reformulation of Theorem A can be stated as

Theorem B Let H be a finite group containing an element x such that H = {[h, x]:h e
H}-Cy(0). If|H : Cy(x)| < n then |[H, x]| < nlos201+D,

Theorem A is the «-CCP analogue of [1, TheoremA]. The key lemma in our proof is
Lemma 3.1 which we obtain as the ¢-CCP analogue of [1, Lemma 2.1]. The rest of the
paper contains the proof of Theorem A and some technical results pertaining to the proof of
Theorem A; all of which are proven in a similar fashion as in the proofs of [1, Proposition
2.2], [1, Corollary 2.3] and [1, TheoremA] with obvious changes, namely using Lemma 3.1
instead of [1, Lemma 2.1]. For the sake of completeness we present a proof here for each of
them.

In Sect. 2 we state and prove some preliminary facts about «-CCP groups. Section 3 is
concerned with our key lemma, namely Lemma 3.1, and its consequences. We prove our
main result Theorem A and its equivalent Theorem B in Sect. 4.

All groups are assumed to be finite. The notation and terminology are standard.

2 Preliminaries on a-CCP groups

Lemma 2.1 The following hold for any a-CCP group G.

(i) G = [G,a] - Cg(a) and |G, a,a] = [G,a). Furthermore G = [G,a] x Cg(x)
whenever G is abelian.
(ii) Every a-invariant subgroup S of G is also an a-CCP group and we have {[x, a1 x e
S}={lg.al: g € G} NS.
(iii) G/N is an a-CCP group for any a-invariant normal subgroup N of G.
Gv) Iflg, all e Cq (@) for some [ and g in G, then g € Cg ().
(v) Cg/n(@) = Cg(a)N/N for any a-invariant normal subgroup N of G.
(vi) { [g,a]:g€G } is a transversal to Cg (). Furthermore oS is a transversal to C gy (a®)
for any a € G in the semidirect product H = G ().

Proof This lemma gives almost the same information as in [2, Proposition 2.2] on an o-CCP
group G. We need only to show that G = [G, o] x Cg(«) when G is abelian: Notice that
[G,a] ={lg. ] : g € G} when G is abelian and also observe that for any [g, a] € Cg (ct),
we have [g, @] = 1 by Lemma 2.1(iv). O

The following lemma is crucial in proving our key lemma Lemma 3.1.

Lemma 2.2 Let G be an a-CCP group and set H = G{«). Then

() the map fya : 06 —> S defined by fya (@) = (@®)** is a bijection for any a € G,
(i) for any X < H with X NaS # ¢ and for any a® € X we have

(aa)X — (aa)XﬂaG — X ﬂO{G.
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Proof &9 is a transversal to Cg (a%) by Lemma 2.1(vi). If g and & are elements of G such
that (@®)** = (a“)"‘h, then o8 (@)~ € Cy(a?) and so &8 = . This proves (i) since @
is finite.

It is straightforward to verify that (@®)X™° c (@)X € X NaC.If &’ € X NaC,
then o) = (a“)“h for some i € G by part (i). This yields o¥ € (a“)“c. Notice that
faur(XNa%) € XNa%asa® € X, and 50 fra (X Na®) = X N since fya is a bijection.
Then «” € X and hence X Na% C (a”)Xn“G which establishes the claim (ii). O

3 Some technical lemmas pertaining to the proof of Theorem A

The following results are modifications of Lemma 2.1, Proposition 2.2 and Corollary 2.3 in
[1] for a-CCP groups.

Lemma 3.1 Let G be an a-CCP group and let © = «%. If I € O and © is an orbit of
(I) on O, then (I) < (®). Furthermore if some member of ® is not contained in (I), then
(I) < (©).

Proof To ease the notation set K = (I) and let ® = («*)X. It should be noted that K (®)
is a subgroup of G because K normalizes (®). Set now L = K (®). Since L N« # ¢ and
o’ € L, we have

(ax)L _ (ax)LﬂaG —LNaS
by Lemma 2.2(ii). Then, for any generator «” of K, we have
@’ e LNa® = @) c(@H¥) = (o).
This completes the proof. O

Lemma 3.2 When G isana-CCP group the group (o) can be generated by log, (W)

conjugates of @ where p is the smallest positive divisor of the order of « and |G : Cg(a)| < n.

Proof Welet © =« and consider the action of () on © by conjugation. Suppose first that
(o) has a fixed point o which is different from «. Then [, x] € C (o) and hence [¢, x] = 1
by Lemma 2.1(iv). This contradiction shows that « is the only fixed point of («) in its action
on O.

Define Ko = 1, Ky = () and for j > 1, K; = (K;_1, o) where at each stage a; € O

is chosen to maximize the order of K ;. Since G is finite, there exists k such that K = (%)
and Kj_1 # (@%). Now («9) = (a1, o2, ..., ) where oy = . Fix j € {1, ..., k} and let
I ={ay,az,...,a;}. Now K; = (I). Choose an orbit ® of K ; with representative B where

B £ K. Then K; < (®) by Lemma 3.1. If ® were also an orbit of K ;_;, then we would
have

Kj < (B%)=(B%) <(B.K; )

contradicting the choice of ;. Therefore ® is a union of at least two orbits of K; 1 on O.
Notice also that B < K; foreachi = 1, ..., j. Thus © is a union of at least 271 orbits of
() on O, each of which has length at least p. Since a; < K; fori < j we see that the set
Q = {1} U {xX1} U ... U {&;Xi~1} is contained in K ;. Therefore 2 N o415 is empty as
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ait1 £ Ki. Then O D {aj} U {an X1y U .. U {op K*=1} and the right hand side is a disjoint
union. So

n=0=14+pd+2+--- 428 =14 pk-t—1.
Consequently we have k — 1 < log, ("+p 1) as claimed. o

Lemma 3.3 Let G be an o-CCP group. Suppose that G is a p-group for some prime p with
m +m
|G : Co()| < p™. Then |[G, a]| <

Proof Firstly we handle the case where G is of class at most two by induction on the order
of G. By Lemma 2.1(i) we have [G, «] = [G,a,a] and G/G" = [G/G’', a] x Cg,c (o).
Then G = [G, «] by induction and hence Cg,g'(a) = 1, that is Cg(a) < G’'. Thus
|G : G'| < p™. In this case the proof is in a similar fashion as in the proof of [1, Proposition
3.1]. For the sake of completeness we present it here. Let the abelian group G = G/G’ be

the direct product of nontrivial cyclic subgroups (x;) fori = 1,...,d where |x;| = p"™.
We have G = (x1,...,x4) since G’ < ®(G). It is straightforward now to verify that
G = ([xj,xi]: 1 <i < j<d)since G' < Z(G). Set H; = (xi41, ..., %4, G'). Then

G =12/ [H;, xi1 fori = 1,...,d — 1. We have |[H;, x;1| < |H;/G'| = p™i+ittma
due to the fact that h |—> [/, x;] defines a homomorphism from H; /G’ onto [H;, x;]. Thus
1G] < T4, p™ Hl UIH;, xi1] < p™ where M = 3% im;. Tt can be proven by induction
on d that M < (m? 4+ m)/2. This completes the proof when G is of class at most two.
Suppose now that G has class ¢ with ¢ > 3. Again assume |G| minimal, therefore
G =[G, a]. The proof in this case is in a very similar fashion as in the proof of [1, Theorem
B]. Note that y._1(G) is abelian. We also observe that [y._1(G), @] # 1, because other-
wise [y—1(G),a,G] = 1 = [G, y.—1(G), o] and hence y._1(G) < Z(G) by the Three
Subgroup Lemma. Let now N be of minimal order among all normal «-invariant subgroups
of G contained in y._1(G) and are not centralized by . Let |G/N : Cg/n(a)] = p”. As
Cg/n(a) = Cg(a)N/N by Lemma2.1(v) wehave |G : Cg(a)N| = p”.Note that G/N and

2+r

N are both a-CCP groups by Lemma 2.1(i). It follows by induction that |[G/N, a]| < p 2

2

As[G/N,a] =[G,a]N/N = G/N we have |G/N| < p%. Letnow |N : Cy ()| = p°.
Since N is abelian we have N = [N, «] X Cn () and so |[N, «]| = p*. It remains to bound
[N/IN, a]| suitably. As N is contained in y.—1(G) we have [N, G] < y.(G) < Z(G).
Hence for g € G the map x — [x, g] for x € N, is a homomorphism with kernel Cy (g), in
particular [N, G] lies in the kernel and |N : Cx(g)| = |[N, gl|. Setnow H = [N, «][N, G].
Observe that 1 # [N, o] = [N, o, o] < [H, o] by Lemma 2.1(i). It follows by minimality
of N that H = N. Thus

I[N, gll =N :Cn(®I <IN :[N,G]l =|[N,a][N,G]: [N, G]| <[[N,a]l.

We also observe that [N, G'] = 1 by the three subgroup Lemma as [N,G,G] = 1 =
[G, N, G]. This gives that NCg(a) < G' < Cg(N). As N < y.—1(G) < G' we get
NCg(a) < G' < Cg(N). Therefore |G : Cg(N)| < p”. Let Y be a minimal generating
set for G modulo Cg(N). Then |Y| < r. Since [N, G] < Z(G) we also see that [N, G] =
[T,er[N. y]. Thus [N, G]| < [N, el < p". So [N| = |[N,GIIN.a]| < p«*D

whence |G| = |G/N| - |N| < p(’2+’)“(’“). This establishes the claim as
1/2(02 4 1) + 50+ 1) <1207 +7) + 1/2(s> + ) + 57
<1/2(0r + )% + 7 +5) < 1/20m% + m).

@ Springer



Centralizer commutator product property

4 Proof of the main results

In this section we present a proof of Theorem A and deduce Theorem B.

Proof of Theorem A Let G be a minimal counterexample to the theorem. Then G = [G, «]
by induction as [G,«] = [G, «, ] by Lemma 2.1(i). As a consequence Cg(a) < G/,
and G is nonabelian. The main result of [2] gives that the group G is solvable and hence
F(G) # 1.If [F(G),a] = 1,then G < Cg (F(G)) = Z (F(G)) by the Three Subgroup
Lemma, which is a contradiction as G is nonabelian. Thus [F(G), o] # 1 and hence there is
a prime p dividing |F(G)| such that [0,(G), «] # 1. Notice that if [Z2(0,(G)), a] = 1,
then Z, (0,(G)) < Z(G) by the Three Subgroup Lemma as [G,a] = G. This forces
0,(G) = Z»(0,(G)) = Z(0,(G)) which contradicts the fact that [0,(G), a] # 1. Let
QO be minimal element of the set {S : S is a normal «-invariant subgroup of G which is
contained in Z; (OP(G)) such that [S, «] # 1}. Clearly [Q’, @] = 1 by the minimality of
Q and so Q' < Z(G) by the Three Subgroup Lemma. Set now Qo = ([Q, «]%). Note
that both Q and |G/Q| are «-CCP groups. So we have [Q, o] = [Q, o, ] by Lemma
2.1(i). Thus 1 # [[Q, «]] < [Qo. ] and hence Q = Qp by the minimality of Q. Now
|QCg () : Cg(a)| = |Q : Co(a)] = p™ for some m. Let |G : QCg(a)| = r. Then

r < p” We observe by Lemma 3.3 that [[Q,«]] < p = C|g,«)(a). Then
R <[Q,a] < Q' and hence R < Z(G). Now

I[Q. al/R| = [[Q.,a]Co(a) : Co(e)| =|Q : Co(a)| = p™.

lﬂzflﬂ
So |R| = ”%;ffl“ < p 7z . Itremains to bound |G/R] suitably.
_Set G = G/R. The group 0 is the product of at most log(r + 1) of the conjugates of
[Q,@]in G: To see this let H = G x {(«). Note that Q x H and Cg(2){) 0 < Nu(Q{e)).
Set H = H/Q.Now |I-7 i Ng(a)| < |H : Q{a)Cg(a)| = r. By Lemma 3.2 ((&)H) can

be generated by at most k = log>(r + 1) conjugates of (). That is (((&))H) ={dl,..., o)
where each «; is a conjugate of o and o1 = «. Note that H = [G, o]{«) = (@™ Cq(a) =
M QCg(a) where M = (ay, ..., ar)Cg (). Therefore

(10,19 = (10,a1") = [Q, ][0, a, M] < [Q, M] = H[Q ail.

We are now ready to complete the proof of Theorem A. By the above paragraph we have

10| = ([0, @1%)| < [0, al* = p™* and s0 |Q| < p™k+(*
by induction. Thus

m—1
This contradiction completes the proof of Theorem A. O

Remark 4.1 As indicated in the introduction one can reformulate Theorem A as Theorem B.
Their equivalence can be easily seen as follows:

Suppose that Theorem A is true. Set H = G x («) and x = o in H. Then [G, o] = [H, x]
and {[g, ] : g € G} ={[h,x] :h € H} and |G : Ci(a)| = |H : C(x)| = n. Therefore
G, a]] = |[H, x] < nlos2(n+1) by Theorem A. Conversely suppose that Theorem B is true
and let H be a finite group containing an element x such that H = {[h, x]l:heH }C g (x)
holds. Set G = H and let « denote the inner automorphism of G induced by x. Then by
applying Theorem B we have |[H, x]| < n/°82("+D ag desired.
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